Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors

نویسندگان

  • Xiangmao Dong
  • Kun Wang
  • Chongjun Zhao
  • Xiuzhen Qian
  • Shi Chen
  • Zhen Li
  • S X. Dou
  • Huakun Liu
  • Shixue Dou
چکیده

Reduced graphene oxide/cuprous oxide (RGO/Cu2O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu2O and reduction of GO, in which Cu2O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu2O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. A specific capacitance of 98.5 F g−1 at 1 A g−1 was obtained, which is much higher than that of pure Cu2O prepared under the same conditions, due to the presence of RGO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs) on the surface of a copper foil supporting graphene oxide (GO) at annealing temperatures of 200-1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitr...

متن کامل

Chiral electrode behavior of magneto - electrodeposited

Chiral properties were investigated in Cu and Cu2O composite films prepared by magneto-electrodeposition. The Cu-Cu2O films were electrodeposited in a CuSO4 and Na2SO4 aqueous solution under magnetic fields B (2 and 5 T) parallel (+B) or antiparallel (–B) to the faradaic current. The magneto-electrodeposited films were used as modified electrodes, and the chiral voltammetric behaviors were obse...

متن کامل

Investigation of Coral-Like Cu2O Nano/Microstructures as Counter Electrodes for Dye-Sensitized Solar Cells

In this study, a chemical oxidation method was employed to fabricate coral-like Cu2O nano/microstructures on Cu foils as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The Cu2O nano/microstructures were prepared at various sintering temperatures (400, 500, 600 and 700 °C) to investigate the influences of the sintering temperature on the DSSC characteristics. First, the Cu foil...

متن کامل

Photocatalytic performance of Cu2O-loaded TiO2/rGO nanoheterojunctions obtained by UV reduction

A novel dot-like Cu2O-loaded TiO2/reduced graphene oxide (rGO) nanoheterojunction was synthesized via UV light reduction for the first time. Cu2O with size of ca. 5 nm was deposited on rGO sheet and TiO2 nanosheets. The products were characterized by infrared spectroscopy, Raman spectrum, UV-Vis diffuse reflectance spectra, XPS techniques, photoluminescence spectra. The results demonstrated tha...

متن کامل

Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2

A facile one-step microwave-assisted chemical method has been successfully used for the synthesis of Cu2O/reduced graphene oxide (RGO) composites. Photocatalytic CO2 reduction was then investigated on the junction under ambient conditions. The RGO coating dramatically increases Cu2O activity for CO2 photoreduction to result in a nearly six times higher activity than the optimized Cu2O and 50 ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017